5

CORRECTED
VERSION®*

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
Intemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GO6F 15/16 A2

'(11) International Publication Number:

(43) International Publication Date:

WO 96/17306
6 June 1996 (06.06.96)

(21) Internations! Application Number: PCT/US95/15279

(22) International Filing Date: 21 November 1995 (21.11.95)

(30) Priority Data:

08/343,762 21 November 1994 (21.11.94) US

(71) Applicant: ORACLE CORPORATION [US/US); SO0 Oracle
Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors: LAURSEN, Andrew; 324 Seville Way, San Mateo,
CA 94402 (US). OLKIN, Jeffrey, C.; 243 Buena Vista
Avenue, No. 606, Sunnyvale, CA 94086 (US). PORTER,
Mark, A.; 350 Allen Road, Woodside, CA 94062 (US).
NAZEM, Farzad; 6 Beresford Place, Redwood City, CA
94061 (US). BAILEY, William; 564 Forest Avenue, Palo
Alto, CA 94301 (US). MOORE, Mark; 203 Rock Harbor
Lane, Foster City, CA 94404 (US).

(74) Agents: SALTER, James, H. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

(81) Designated States: CA, CN, JP, Eurcpean patent (AT, BE, CH,
DE. DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of thas repors.

(54) Title: MEDIA SERVER
{57) Abstract

An improved system and method for providing multimedia data
in a networked system is disclosed. The present invention provides
a platform of distributed client-server computing and access to data
over asymmetric real-time networks (120). A service mechanism
allows applications to be split such that client devices (110) (set-top
boxes, personal digital assistants, etc.) can focus on presentation,
while back-end services running in a distributed server complex
(100). provide access to data via ‘messaging across an abstracted
interface.

H i
[} - H

* (Referred to in PCT Gazerte No. 41/1996, Section 1)

applications under the PCT.

AT
AU
BB
BE

P3IRZRA09QA2ZQA0IRERT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Cenmma) African Republic

Swinzertand
Coee d'Yvoire

ey

H

TIXERCERCES AEEVIRER2RS

United Kingdom
Georgia
Guinca
Greece
Hungasy
Ireland
haly
Jspan
Kenyz
Kyrgystan

Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg

Larvia

Monaco

Repubdlic of Moldove
Madagascrr

Mahi

'Mmgo\h

233

$S553239%2R2RBEZIAEEZ

WO 96/17306 PCT/US95/15279

The present invention relates to the field of information storage
and transport systems. Specifically, the present invention relates to
distributed processing systems for selecting, retrieving, and delivering
arbitrary types of real-time or non-real-time data streams over a network.

BEFERENCE TO RELATED PATENT APPLICATIONS

The following co-pending patent applications are related:
U.S. Patent Application entitled, "
", invented by , with serial no.
— andfiledon____
DRESCRIPTION OF RELATED ART

Currently, most data accessed on large servers is structured data
stored in traditional databases. Networks are local area network (LAN)
based and clients range from simple terminals to powerful workstations.
The user is corporate and the application developer is an MIS
protessional.

With the introduction of broadband communications to the home
and better than 100-to-1 data compression techniques, a new form of
network-based computing is emerging. Structured data is still important;
but, the bulk of data becomes unstructured: audio, video, news feeds,
etc. The predominant user or client becomes the consumer. The
predominant client device becomes the television set. The application
developer becomes the storyboard developer, director, or the video
production engineer.

Simple, atfordable access to multimedia information is both an
enormous business opportunity and a powerful vehicle for people to
change the way they live and work. Whether in the realm of shopping,
news, movies, education or other applications, consumer multimedia
will make obsolete much of what we know about storing, retrieving, and
processing information.

Providing information to consumers on a large scale presents
many challenges. Ultimately, providers of information must find

WO 96/17306 PCT/US95/15279

-2-

profitable means to reach price points that will drive demand, keep pace
with technology, deliver simple access to computerphobic consumers,
and deliver a robust architecture that allows the systems to evolve and
grow.

The last decade of computing has produced inexpensive client
hardware with shrink-wrapped software, scalable server hardware with
complex data management software, and ubiquitous heterogeneous
networking hardware with sophisticated networking software. Howaever,
the promise that multimedia data will be readily shared and easy to
access has been mostly unfulfilied. Most conventional multimedia
software is single user and fairly easy to use or it allows resources 1o be
shared but the degree of sharing extracts a correspondingly high price
in usability. Consumer-based interactive networking is an attempt to
provide simple access to unprecedented amounts of shared data. The
present invention provides a framework for such an endeavor.

Thus, a better means and method for storing, retrieving and
transporting multimedia data in a networked system'is needed.
SUMMARY OF THE INVENTION

The present invention is a better means and method for providing
multimedia data in a networked system. The present invention provides
a platform for distributed client-server computing and access to data
over asymmetric real-time networks. A service mechanism allows
applications to be split such that client devices (set-top boxes, personal
digital assistants, etc.) can focus on presentation, while backend
services running in a distributed server complex, provide access to data
via messaging across an abstracted intertace. Services enable clients to
access data or resources that the clients cannot (or should not) access
directly. Each service provides access to a particular type of data or
resources. A service exports one or more functions, which perform
specific actions related to the data or resource. A client program
invokes a function by communicating with the service that exports that
function.

The present invention supports access to all types of
conventional data stored in conventional relational and text databases.

WO 96/17306 PCT/US95/15279

-3-

In addition, the present invention includes a real-time stream server that
supports storage and playback of real-time audio and video data. The
Media Server of the present invention also provides access to data
stored in file systems or as binary large objects (BLOBs - images,
executables, etc.).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the system architecture of the present
invention.

Figure 2 illustrates the internal architecture of the media server of
the present invention.

Figure 3 illustrates the node addressing used in the present
invention.

Figure 4 illustrates the diverse network pathway that may exist
between clients and servers.

Figure 5 illustrates the problem with an asymmetric network.

‘ Figure 6 illustrates the upstream manager interfaces in the media
server.

Figure 7 illustrates the content of the Connection Service Table.

Figure 8 illustrates the content of the Routing Table.

Figures 8-10 are flowcharts illustrating the processing flow for
establishing a connection between a client and the media server.

Figures 11-12 are flowchants illustrating the processing fiow for
accessing a service through the media server.

Figures 13-14 illustrate the dual channel input to the downstream
manager.

Figure 15 is a flowchart illustrating the processing flow used in
the downstream manager for controlling the real-time and non-real-time
input streams.

Figure 16 illustrates the remote procedure call (RPC) operation in
the present invention.

DETAILED DESCRIPTION OF
THE PREFERRED EMBODIMENT

WO 96/17306 PCT/US9S/15279

-4-

The present invention is a better means and method for providing
multimedia data in a networked system. In the following detailed
description, numerous specific details are set forth in order to provide a
thorough understanding of the present invention. However, it will be
apparent to one of ordinary skill in the art that these specific details need
not be used to practice the present invention. in other instances, well
known structures, interfaces, and processes have not been shown in
detail in order not to unnecessarily obscure the present invention.

The basic architectural components of the consumer-based
interactive network architecture of the present invention is illustrated in
Figure 1. The media server 100 consists of any number ot computers
networked in any fashion. The network 120 connecting clients 110 and
servers 100 are asymmetric, with high bandwidth available in the
downstream direction 124. Client devices 110 are conventional and
well known systems generally built for interactive TV. These client
devices are generically denoted set-top boxes. Other classes of devices
(personal digital assistants, video phones, etc.) will become important to
consumer-based networks in the near future. The present invention
supports these devices as well.

Networks

The major characteristic shared by the networks currently being
deployed for interactive TV is asymmetric bandwidth. Downstream
bandwidth (i.e. the link from server to client device) ranges from a
minimum of 1.5 megabits/sec (DS1 data rates) to 45 megabits/sec (DS3
data rates). Upstream bandwidth on a back channel (i.e. the link from
client device to server) may be more modest, ranging from 9600 bits/sec
1o 64 kilobits/sec. Bandwidth will increase in both directions, but will
probably remain highly asymmetric; because, most information flows
toward the consumer.

Three types of conventional physical data transport techniques
provide the foundation for three types of networks supported by the
present invention. It will be apparent to those of ordinary skill in the an
that other networks can be supported as well by the present invention.

. ADSL (Asymmetric Digital Subscriber Loop) provides 1.5 - 6

WO 96/17306 PCT/US95/15279

-5-

megabits/sec of downstream bandwidth - up to 64 kilobits/sec in the
opposite direction - over a twisted pair of copper wires. The maximum
distance achieved to date is 6,000 meters. This technology provides
broadband capability to millions of consumers over their existing phone
lines.

* Coanxial cable promises to provide 500 channels. Cable provides
450-1000 megahertz of bandwidth. State of the art radio frequency (RF)
modulation technology provides up to 8 bits per hertz. A typical cable
plant buildout for interactive TV will provide back channel bandwidth in
the 5 - 50 megahentz range, with the rest dedicated to single user
downstream channels in the 3 - 12 megabit/sec range. Thus, each
interactive user (client) is aliocated a virtual downstream channel in the
high frequency spectrum and a corresponding back channel in the low
frequency spectrum. The downstream channel is typically a time-
division multiplexed bit stream modulated over an analog channel
(6Mhz for NTSC and 8 Mhz for PAL). There are, of course, many ways
to allocate and modulate the available bandwidth and capacity can be
greatly increased with the addition of fiber.

* ATM (Asynchronous Transfer Mode) to the home over fiber/coax
hybrid networks provides maximum flexibility for both bandwidth and
addressing. ATM technology is well known in the ant. Because ATM
provides dynamic allocation of bandwidth, it is possible to provide
variable bandwidth bit streams using ATM. Thus, it is possible to serve
movies at 3 megabits/sec, sporting events encoded in real-time at 8
megabits/sec, and HDTV compressed at 20 megabits/sec (or whatever
bandwidth is required). ATM also provides flexibility at the headend
since many servers can be directly connected into the ATM switch fabric
at very high bandwidth; 155 megabit/sec is available today, increasing
to 622 megabits/sec or 1.2 gigabits/sec over time.

Another important network characteristic is latency. In today's
systems, a message may take more than a second for a round trip. Back
channels are slow, multiple hops are often required, and return values
(bit maps, executables, etc.) are often large. Applications must be
designed with these latencies in mind.

WO 96/17306 PCT/US95/15279

. -6-

The transport protocol over the network 120 depends on the
direction of travel. Upstream, the transport may be X.25, UDP, RS232,
or other wall. known protocol. Downstream, the transport may be MPEG-
2 (Motion Picture Experts Group) transport packets, MPEG-1 bit streams,
UDP packets, or another well known high-speed protocol.
Compression

" Video compression technology reduces lafge bandwidth video
data to rates that can be supported by the interactive networks. Just as
the new networks provide the essential hardware technology for
interactive deployment, new methods of video and audio compression
are the essential software technology.

Although, studio-quality digital tape drives deliver more than 200
megabits per second, a typical home wired for interactive service will
have only 1.5 - 6 megabits per second of downstream bandwudth Thus,
content must be compressed at over 100:1 to enable transport over the
network. This high rate of compression cannot be achieved without
ancoding loss; some data must be thrown away. Conventional
compression-decompression algorithms (codecs) differ in how they
choose the data to throw away and the data to keep. Well known
compression schemes, for instance JPEG (Joint Photographic Expens
Group), apply frequency transformations, such as DCT (discrete cosine
transform), to the data, which take advantage of spatial redundancy
(adjacent pixels tend to be similar). Unfortunately, in order to produce a
picture of comparable quality to a VHS VCR, JPEG bit rates of at least 4
megabits/sec must be used. This rate is too high for the low end of the
standard network delivery bandwidth.

Fortunately, a video stream also has large amounts of temporal
redundancy (adjacent frames are the same or similar). Compression
algorithms such as MPEG-1 (Motion Pictures Experts Group) and
MPEG-2 take this redundancy into account and compress it out of the
data. Carefully compressed movie footage using MPEG-1 at 1.5
megabits/second is comparable in quality to a VHS VCR. At bit rates of
around 4 megabits/sec, MPEG-2 is comparable to a laser disk. Atdata
rates of 6 - 8 megabits per second (within reach of both ADSL and cable

WO 96/17306 PCT/US95/15279

-7-

coaxial systems), the video quality is better than laser disk.

While video compression benefits from both temporal and spatial
redundancy, audio compression does not. Thus, the audio compression
achieved for CD-quality sound is only around 7:1 (compared to greater
than 100:1 for video).

Digitally compressed video has many advantages over traditional
analog video. For example, it provides play-through compatibility
between disparate standards such as PAL and NTSC, perfect frame
stills, and perfect multi-generation reproduction of master content.
Digital compression offers features that are impossible with analog
recordings, such as MPEG-2's scalability enhancements which allow
users to pan across large pictures, and even zoom in on features, with
an increase in detail.

Digital compression has disadvantages as well. By compressing
the temporal redundancy from a stream, the resulting single frame of
compressed video is no longer self-describing, relying on nearby frames
to completely reconstruct its contents. This makes random access in to
the middie of a stream difficult: the jump can only be made to well-
defined access points, of which there are typically 1 - 3 per second. This
inter-frame dependency also makes it difficult to edit compressed video.
Finally, because of the complexity invoived in determining the
dependencies between frames, it is very difficult to compress video in
real-time. Though real-time video encoders exist today, they are
expensive and not likely to break into the consumer market soon. In the
meantime, video conferences from the home will be limited to the use of
existing picture-phone technology. Note, however, that real-time
decompression is simpler and can be accomplished by a single chip.

Fractal compression is a proprietary video compression
technology that relies on the inherent duplication of basic shapes in
pictures. Though currently still in the research stage, this technology
promises very good compression ratios for certain types of data. Fractal
compression does not eliminate inter-frame temporal redundancy, and
thus does not have any of the drawbacks mentioned above.
Computationally, however, it is very expensive.

WO 96/17306 PCT/US95/15279

-8-

There are other conventional compression-decompression
algorithms such as TrueMotion and indeo Video. Since large vendors
are justifiably hesitant to use proprietary codecs, telephone and cable
companies are supporting the MPEG aigorithms to the exclusion of all
other compression technologies. 'Eventually, the industry will settle on
an envelope protocol that will transport any compressed digital data,
regardiess of format. This envelope format may be MPEG-2 transpornt, or
a hypermedia format such as MHEG or Hytime or it may be somethi.ng
not yet invented. ‘

Even though digital media compression enables real-time stream
delivery over the bandwidth available in current networks, it is not a
"throw-away" technology. As network bandwidth increases, it still makes
sense to continue to compress the video and audio, and use the spare
bandwidth to carry more information (simultaneous data with video,
multi-way video conferencing, etc.).

Thus, integrating video compression into the heart of the Media
Server is essential. The present invention accomplishes this by having
the Stream Service 224 generate and manipulate the real-time
‘audio/video data as it served to the downstream manager. This
includes identification and modification of the data structures (headers,
pictures, aspect ratios, etc.) in the original data in real-time.

Referring again to Figure 1, the client device or set-top box 110 is
a device that combines the functionality of current analog cable
converter boxes (tuning and descrambling) with the functionality of
computers (navigation, interaction and display). The current generation
of conventional set-top boxes have four major components: a network
interface, an MPEG decoder, graphics overlay, and a presentation
engine. _

- The network interface provides both downstream and upstream
interfaces over one or more physical connections.

« The decoder converts MPEG encoded data into audio and video. In
addition, the MPEG subsystem may demultiplex application and control
data from an MPEG transpont stream.

WO 96/17306 PCT/US95/15279

-9-

» The graphics overlay provides at least one graphics plane, bitmap
operations, and optional chromakey mixing, a well known technique.

» The presentation engine consists of a CPU, at least two megabytes of
memory, and a real-time operating system. The client portion of the
application runs in this subsystem of the client device 110. In the
preferred embodiment, the application is controlied through the use of a
simple remote control device with buttons or a joystick.

In order for interactive consumer systems to be widely deployed,
vendors are targeting such set-top boxes 110 in the $200-$400 price
range, and thus comparable in price to a low-end VCR. While vendors
are currently building entry-level set-top boxes, higher end systems are
envisioned, with better graphics capability, high speed printers, graphics
and video capture, and perhaps keyboards for advanced users.
Ultimately, the entire range of set-top boxes will be distributed as
consumer devices, just as VCR's, video game players and TVs are
today.

Data Types

Unlike most corporate data, the data being managed in these
systems is' mostly read-only. The data that is changeable is inherently
partitionable (consumer preferences, PINs, etc.) or append-only data
(billing records, usage data, etc.). The amount of accessible data is
several orders of magnitude greater than that contained in corporate
databases today.

The types of data that must be accessible to consumers through
client devices 110 include: isochronbus, textual, structured, and binary
large objects.

- lIsochronous data is what comes to mind when the term multimedia is
used. Films, television, and music will be on-line and available on
demand using the present invention. The main attribute of this type of
data is that it is too large to simply download and store. It must be
delivered in real-time with minimal buffering. Real-time delivery of audio
and video is necessary for the success of consumer based networks, but
certainly not sufficient.

* On-line textual databases will provide access to many terabytes of

WO 96/17306 PCT/US95/15279

-10-

data, from live news feeds 1o current novels to popular magazines. One
major problem is to navigate and search this sea of text using devices
that have no keyboards. The present invention has the ability to reduce
and abstract text which will help reduce the amount of text that must be
initially displayed.
+ Binary large objects (BLOBS) are used in the present invention to
store many kinds of information, from images to application logic as
stored in scripts. The same transport (with the addition of forward error
correction) that is utilized for isochronous data is ideal for BLOBS.
. Structured data, as stored in a relational database, is used much as it
is today in corporate databases, to provide flexible access and to ensure
integrity. Very large objects, isochronous and textual data will be
inefficient if stored in conventional relational databases due to the way
the data is searched and accessed. For example, an MPEG-encoded
movie would not be stored in relational database but all its attributes
(director, leading actors, price, etc.) would be.

in view of these prior art subsystems and the need to support an
additional level of functionality, the media server 100 and the supporting
network layer of the present invention provides a full-featured system for
interactive multimedia presentations.

The present invention provides a layer of software that enables
distributed client-server computing in the consumer-based networks
described above. The main components of the present invention
include:

+ a service infrastructure

comprehensive set of services

access to data

a real-time stream server

messaging and remote procedure calls (RPC) via the network protocol
of the present invention.

Referring now to Figure 1 and Figure 2, the architecture of the
present invention assumes that data is stored and managed on the
server 100 and the client device 110 provides a view onto that data.

WO 96/17306 PCT/US95/15279

-11-

Generally, the view is through some paradigm such as a digital mail,
personal digital assistant, or electronic newspaper. The user navigates
locally on the client device 110 and data is requested from the server
100 as necessary. This provides a very clean split between the client
side of the application and the server side.

Server applications (services) 122 are "data based" and
developed with the same tools used to build corporate databases (i.e.
data modeling tools, schema editors, etc.). These services must be built
in a reliable and scalable manner.

Client applications 276, shown in Figure 2, are built using
interactive, graphical authoring tools that allow digital assets (video,
images, sounds, etc.) to be mixed with presentation logic to produce a
run-time environment for interactive TV. The present invention supports
runtime environments by providing such services as application
download, asset management, authorization, and stream interaction (as
will be described below). Typically, there are many more client
applications built than those for the server 100. For instance, there may
be three home shopping services nationwide that are used by hundreds
of client applications.

Because latency is a major issue in the network 120 as described
earlier, the architecture of the present invention allows distributed
applications to be built where all state information is maintained on the
client device 110. The use of remote procedure calis (RPC) to access
services and data through the media server 100 is preferred over the
use of a traditional Structured Query Language (SQL) for data access.
This is because it reduces the number of round-trip messages and
provides easy to use interfaces to application services.

Service Infrastructure

Figure 1 shows a plurality of available services 122 on media
server 100. Figure 2 shows examples of these services and shows in
more detail how these services can be partitioned into applications
services 240 and system services 214. However, in reality, this
partitioning is purely arbitrary. Any of the services 240 or 214 are
accessible to a client on client device 110 or accessible to another

WO 96/17306 PCT/US95/15279

-12-

service on server 100.

Each service 122 as shown in Figure 1 comprises one or more
cooperating server executiori threads which may be distributed across
several machines. Load balancing across these server threads is
performed by server 100 dynamically and transparently to the client.
Requests sent by a client are routed 10 a service control point which
decides, based on current system activity, which server process can
actually handle the request. The service contro! points support many
server threads before they become bottlenecks. Still, because these
systems must be highly scalable, service control points may be
replicated. For example, the name service 222, which is used to locate
all other servers, must be replicated in order to handle the large
numbers of requests sent to it.

To shield client applications from network implementation details,
client applications never interact directly with the underlying databases.
Instead, all applications developed with the media server 100
communicate with services by sending messages locally or remotely.

interfaces to the services are defined using an interface definition
language (IDL). A service interface consists of a set of operations that
define what the service can do. Once created, the interface definition is
compiled to generate stubs which isolate the distributed nature of the
system from the computations being performed. Client applications 276
execute the operations by making remote procedure calls (RPC) to the
server 100. The use of RPC in the present invention is described in
more detail below. In addition to providing its base functionality to client
applications 276, each service 214 and 240 has a standard interface for
configuration, management, monitoring, debugging, logging and
auditing.

Access 10 Data

Whereas client applications 276 access data via RPC's to
services, services access data via a set of access libraries to the various
data repositories:

« Isochronous data is stored in the Media Data Store (MDS) 251, a real-
time striped file system that allows concurrent, random access to video

WO 96/17306 . PCT/US95/15279

-13-

and audio data. The interface allows media streams to be positioned
and played. All attributes describing the streams (title, content
description, compression format, etc.) are stored as structured data in a
conventional database.
 Textual data is stored in the conventional Text database 253, shown in
‘Figure 2, as a set of indexed documents. The interface allows
documents to be searched by words, phrases, and even concepts. The
ability to abstract text is provided by a conventional product that can
parse and interpret English text using a sophisticated lexicon and
50,000 parse rules.
+ Binary Large Objects are stored as opaque data types in either the
Text database 253 or in the Media Data Store 251. As with isochronous
data, all attributes of the BLOBS are stored as structured data.
* Structured data is stored in the Text database 253 and accessed via
SQL and PL/SQL (Procedural Language/SQL). Text database 253
provides distribution, replication, and paralle! access to the data. Stored
procedures, execuling within the protected space of the database
environment, provide an excellent mechanism for building reliable
services. A server application in this model consists of a schema and a
set of procedures to access the data in the schema (which may be -
invoked directly from the client via the procedural service described
below).
Beal-time Stream Server

Providing isochronous data access is an inherently different
problem from traditional types of data access that lack the real-time
component. Therefore, the real-time components of the media server
100 are segmented from the other parts by a scheduling "fire-wali*. All
access into the real-time section of the server goes through a real-time
scheduler 299 which analyzes the load any given request will make on
the system, determine if the request can be granted given the current
system load, and then schedule the access. The real-time scheduler
takes CPU, disk and memory resources into account when analyzing a
request.

Even with the scheduler ensuring that the system does not

WO 96/17306 PCT/US95/15279

-14-

become over-committed, there are many constraints on the real-time

server design and operation. The server must:

« service a large number of concurrent data streams, each with
independent control

- be reliable through any reasonable hardware or software failure

- store an enormous amount of data and coordinate movement of that

data between different media and different servers

- allocate bandwidth between parts of the system

- be portable to any viable server hardware platform

Stream Control

The real-time stream server provides full VCR-like controls to the
user: fast forward and rewind, slow forward and rewind, frame advance
and rewind, random positioning, etc. Howaever, it is not simple to fit
these features into a real-time scheduling system, since each places a
ditferent load upon hardware resources. In addition, depending on the
video/audio codec being used, each of these special modes may place
different demands upon the real-time scheduler.

In the simplest model, a stream is merely a string of contiguous
bits which must appear at the decoder at a particular rate. The server
100 is responsible for accepting a command to start a stream and one to
prematurely terminate a stream. In this model, streams would be easy to
allocate, schedule and deliver. Maximum service levels could be easily
computed.

Unfortunately, the real world is not so simple. During the
playback of a stream, many events may require the stream server to
change its behavior. For example, if the user presses the pause button
on the remote control, the server 100 must stop delivering bits
temporarily. Since there are network butters between the server and the
set-top box, the server 100 has no way of determining exactly where
the set-top box 110 was paused. So the server 100 and set-top box 110
must communicate so that the server 100 may queue from that point so
that it will be ready for the subsequent play command. The present
invention provides this position coordination through a real-time stream
control interface which resides both on the client and server.

WO 96/17306 PCT/US95/15279

-15-

The other VCR control commands are even more complex to
implement. They all involve changes of bit rate, hard-to-predict disk
seeks, and large amounts of CPU processing. Each of these must be
factored in to the real-time scheduler 299 in order to provide the
maximum level of continuous guaranteed service. A

As described above, there are multiple video compression
methods. For each compression-decompression algorithm, a software
module handles all the aspects of that algorithm. This module provides
entry points not only for all the different rate controls, but also provides
entry points to allow the caller to reduce or enlarge the spatial
resolution, temporal resolution (frame rate), tunneled date rate, etc. This
modular component allows the real-time stream service 224 to stay
independent of which codec is used for each stream. The entry points
offered for each compression algorithm depend on the capabilities of
that codec. For example, single-frame-reverse is not supported in the
MPEG-1 or MPEG-Z modules.

By providing random entry ability and controlled piayback of data,
the stream service not only provides rich real-time stream playback but
also is part of the hypermedia interactive environment provided by a
client application. Thus, in addition to playing movies at a users
request, the server 100 can play video or audio clips in response to
other services, such as home shopping, education and video hyperiinks.

Stream control features make the consumer/client experience
superior to that provided by normal video tape in many ways. Users can
choose movies in minutes without leaving their houses. They can
change their minds half-way through a movie and select another. They
can stop a movie half way through and choose to continue it an hour,
day, or year later, the digital content never becomes worn or fuzzy form
overuse, and the digital frame still and advance capabilities are
equivalent to those found only in very high quality VCRs.

Reliabili

As information servers take on more and more of the
communication tasks of consumers, they will have to become as reliable
as the current télephone system. To achieve this, real-time server 100

WO 96/17306 PCT/US95/1527%

-16-

can be configured for various levels of reliability.

By far the most common failure point in the isochronous server
100 is a magnetic disk drive. This is largely because the disk drives are
the only part of the core system with moving parts. Even with mean time
between failures (MTBF) of 1,000,000 hours, systems with large farms of
disks will experience individual disk failure on a regular basis. For a
system with many terabytes on-line, and thousands of disk drives,
frequent disk drive failures could render large amounts of content
inaccessible.

The real-time server 100 can identify and correct disk failures
without interrupting the real-time data tiow. The approach used is
described in an above referenced co-pending patent application entitled
Real-Time RAID." A new approach is necessary; because, traditional
approaches to disk redundancy (e.g. RAID) are anything but real-time.
Disks also go off-line many times during the day due to thermal
recalibration, predictive failure analysis checks, etc. As with disk
failures, the present invention rides through these temporary
interruptions without any interruption of real-time service. On any
system with disks that may be hot-swapped, when the media server 100
has determined that a disk has failed and needs to be replaced, media
server 100 prompts the operator to remove the bad disk canister and
load in a new one. Media server 100 then requests resource bandwidth
from the server scheduler to rebuild the volume as fast as possible
without disturbing stream playback.

The present invention provides two dimensions of reliability
configuration for disks. The system manager can select what storage
overhead to incur to guard against both multiple simultaneous disk
failures or multiple disk chain controller failures. The ability to continue
uninterrupted play through both disk and controller failures solves the
largest reliability challenge present in the real-time server 100.

The second most common failure is a network backbone
communications failure, most likely from a piece ot hardware outside the
real-time server 100. To cope with this failure potential, the present
invention can accept routing commands during stream playback. When

WO 96/17306 PCT/US95/15279

-17-

the network management service 227 determines that a stream needs to
be rerouted, network management service 227 commands the virtual
network layer 212 to re-route the signal and simultaneously informs the
stream server 224 where it should send the data. This happens on the
fly, without having to restart the stream.

Software failure is a third potential source of system failure in the
media server 100 of the present invention. For the most pan, portions of
the media server 100 are logically placed behind a real-time “firewall.”
These portions are thus independent from each other, so a single
software failure should interrupt at most a handful of streams. Because
the real-time stream service 224 checkpoints frequently, a stream can
be restarted from a different point in the system quickly with only a small
service disruption to the user. Once the service manager detects the
software fault, it immediately restarts the parts of the system that failed.

Hardware and software redundancy and independent restart-
ability are part of the basic architecture of the media server 100. By
placing these elements into every service, a complex system can be
diagnosed and restored to normal operation in the shortest possible
time.

Storage Capacity

Financially, the key metric in serving video is megabytes per
second per dollar (more generally, bandwidth per time per cost).
Because different content (feature-length movies, classic movies, home
shopping videos) will have different revenue and usage patterns, the
server 100 allows the data to be stored on a variety of devices, each
with different cost, bandwidth, and capacity characteristics.

The system manages a multi-tiered media datastore 251 where
movies might be staged from off-line tape to an on-line optical jukebox
to magnetic disk and finally to RAM. With commodity disk drive prices
currently at approximately $600/gigabyte, a 2-hour movie costs $800 to
store on magnetic storage. This same movie costs $40,000 to store in
RAM and about $50 to store on off-line tape. Where the content resides
at any given time is determined by the server 100; but, a human server
manager can override that decision at any time. When a decision is

WO 96/17306 / PCT/US95/15279

-18-

made to move a portion of media content, this request is scheduled into
the real-time scheduler 299 just like user requests.

In addition to staging data between multiple tiers of storage ona
single server, the media server 100 can also move between servers
over a high-speed inter-server network backplane. Because of the

~ design of the storage system, staging from another server is equivalent
to retrieving from off-line tape. When data is moved between different
storage media or between servers, the reliable messaging features of
the network protocol of the present invention are used.

When media content is loading from a tape, the user is given
control as soon as possible without waiting for the entire movie to load.
While the movie is playing, media content is cached in either disk or
RAM to provide full rewind and still capabilities. Of course, since the
movie is loading from a sequential medium, fast forward is limited to the
amount the server 100 has loaded ahead of the user's current frame.
Bandwidth Schedul

Interconnect bandwidth is the limiting factor not only in the
networks being deployed but also in the real-time server 100. Even with
the high data and video bandwidths being used today, CPU power is
plentiful. This bandwidth is divided into three categories: reading from

“external /O devices such as disk or tape, internal routing of the data
within the server 100, and the external routing of the data over the
network. By balancing these three categories, the cost per stream can
be minimized.

Building a well balanced system requires that it must be
scheduled precisely, or one segment of it may temporarily become
overloaded. As described above, the real-time scheduler 299 has a
very complex job. It must mix bandwidth requests from streams in
normal play-forward mode, others which are being fast-forwarded, disk
rebuild processes, downstream application data, off-line media
requests, and requests to and from other servers. The real-time
scheduler 299 of server 100 allows the system to be used within a small
margin of maximum capacity, yet still ensures that no stream will ever
glitch.

WO 96/17306 PCT/US95/15279

-19-

It is transparent to the system administrator whether the system is
serving thousands of streams of the same movie or thousands of
streams of different movies: any combination is possible. The manager
does not have to make decisions about disk layout in order to achieve
better pérformance for one load pattem or another. In addition, if the
network connected to the server 100 supports routing one stream {0
multiple households, the system can "piggyback” users onto other users
already playing that stream at nearby points. Of course, this
optimization becomes more complicated when one of the users hits the
pause or tast-forward keys, because the server 100 must start a new
stream to service the customer who split from the concurrent pack.
Portabili

By requiring only a low-level real-time kernel, the media server
100 software is portable among many existing and new hardware
platforms. The media server 100 can be delivered on a wide range of
conventional systems, ranging from workstations serving a handful of
streams through symmetric multiprocessor (SMP) machines up to
massively parallel (MMP) machines delivering many thousands of
streams. In addition, since the present invention depends only on
features that must be minimally present in all hardware, the media
server 100 is operating-system independent.

The Network Protecol of the Present Invention

The network protocol of the present invention provides the
communication backbone that allows services scattered across
heterogeneous.‘ asymmetric networks to communicate with each other
transparently. For the most part, the level of exposure of the network for
application servers and clients is minimal, since RPC serves to hide
these implementation specific details.
Network Layer

The network protocol of the present invention is composed on
one or more underlying networks, each with their own well known
characteristics. In the description that follows, the topology of the
network is described as a directed graph whose vertices are nodes

WO 96/17306 PCT/US95/15279

-20-

(either intermediate nodes or endpoints) and whose edges are data
links between nodes. Figures 3-5 are examples of such a directed
graph. .

A node is a point in the network through which data is routed.
The mapping between a node and an operating system process or
machine is arbitrary. A single process may allocate several nodes, and
many processes on a machine may allocate nodes independently.

The edges of the graph are directed, which means that each data
link specifies the direction in which data can be sent on that link. Some
data links are bidirectional. To a user of the network protocol of the
present invention, however, the entire network appears bidirectional.
That is, given any two vertices, if there is a cycle in the graph that
includes the two vertices, those two nodes may communicate. Routing
mechanisms in the present invention hide the usual topologies.

Data links may either be packet-switched or circuit-switched.
These switching techniques are well known to those of ordinary skitl in
the art. Using a packet-switched link, data may be directed to any of a
number of endpoints by specifying the endpoint address. Using a
circuit-switched link, data sent from one end of the data link can only
arrive at the other end of the link. Circuit-switched links can be
unidirectional or bidirectional. For example, X.25, ATM and TCP/IP are
well known bidirectional circuit-switched links. A conventional T1 line
carrying data into a client device is a unidirectional fink. UDP/IP and
most inter-process communication (IPC) facilities are examples of
packet-switched links. These link protocols are also well known in the
ant. In any case, a packet is used as the lowest common denominator or
transport means; because, a byte stream may easily be divided into
packets.

Bouting

Because a packet may travel through several different types of
underlying networks, each with their own addressing schemes, the
network protocol of the present invention defines its own independent
address space. This technique hides the many different types of
addresses in use for each type of data link.

IS

WO 96/17306 PCT/US95/15279

-21-

Each logical address in the preferred embodiment is a 64-bit
word that globally identifies an endpoint of communication, or node.
The address maps to a directed edge in the network as desctibed
above. When a node sends a message, the node specifies a reply
address which maps to the edge directed back toward the sender. This
may be the same link over which the data is sent (if the data link is
bidirectional); but, it is usually not the same link in the reverse direction.

The routing problem is to find all of the intermediate links
between a sender and the end point of the link at the given address.
Since this a recursive problem, the address space is divided up into a
hierarchy of subnets. Routers need only know how to reach subnets.
The knowledge of how to reach a particular node is distributed
throughout the system, rather than centrally located in one place.

Referring now to Figure 3, a prefix of the destination node
address is used to identify a subnet. The longer the prefix, the finer the
granularity of the subnet. Subnets may be arbitrarily mapped to
processes and machines. For example, a single process, may own an
entire subnet.

In Figure 3, node A needs to send a data packet to node B (i.e.
the node at address 12.34.12.22. Node A first sends the packet to a
gateway 364 for subnet 12.34.00.00, which forwards the packet to
gateway 368 for subnet 12.34.12.00 That gateway 368 routes the
packet to the destination endpoint B via link 370. Note that an address
really identifies a particular link, not a node, so one node may have
several addresses. The clouds in Figure 3 represent different types of

“underlying conventional networks.

Referring now to Figure 4, routing decisions are made only when
a packet moves across a junction from one type of data link to another.
For example, since an Internet Protocol (IP)-based network 464 appears
as one hop, the gateway 463 need only be present when a packet must
enter or leave the IP-based network and enter or leave a different type of
network, such as an X.25 network 462. Since existing network routing
need not be replaced, network resources can be used very efficiently. In
a completely homogenous bidirectional network, no gateways would be

WO 96/17306 PCT/US95/15279

-22-

required, and the routing functionality of the network protocol of the
present invention would not be used.
Add Requisiti

Routing quickly becomes an administrative nightmare if
addresses have to be managed manually, especially in situations where
large numbers of client devices enter and leave the network with a high
rate of turnover. In the present invention, all routing tables are managed
dynamically using dynamic address allocation.

When a node is initialized, the node must obtain a logical network
address 1o identify itself. Alternatively, the node may have a well-known
address that it needs to announce to other network components.
Requesting an address is complicated; because, the data links in the
network may be unidirectional, and physical network broadcast (e.g.
Ethemet broadcast) is not typically available. Further, it would not be
feasible considering the number of nodes in the network.

Referring now to Figure 5, a basic asymmetric network
configuration is illustrated. in order for a node 560 (Client 1 in this
example) to obtain a logical network address for itself, the node 560
must know the data fink 562 through which it can reach a server, and the
link 566 through which it expects the response from the server. The
latter downstream link 566 is the link that is actually assigned the
address.

The address request from the node 560 specifies the downstream
link 566 in a data-link specific manner. The problem is to figure out how
to get to that data link assigned. The information provided by the node
560 may not be sufficient to enable completion of the address request.
Often the server that receives the address request is not connected
directly to the downstream link 566.

In Figure 5, suppose that gateway/server 1 receives an address
request for a client device 560 over a serial line 562. The client
specified a T1 line as the downstream link. Unfortunately, the T1 line is
not attached to the machine where gateway/server 1 is running; it
happens to be attached to a ditferent machine (gateway/server 2), which
is connected to gateway/server 1 via Ethernet link 564. Gateway/server

WO 96/17306 PCT/US95/15279

-23-

1 forwards the address request over Ethernet link 564 to gateway/server
2, which allocates an address and issues the response to the requesting
client device 560 through the downstream channel 566.

The network protocol of the present invention is able to forward
address requests in this manner; because, gateways and servers know
about each other and about the types of data links to which they are
connected. This address requisition process is described in more detail
below in connection with a description of the processing performed by
the upstream manager 220 and downstream manager 210 of server
100.

Why is all this address request processing necessary? Because
the address that is ultimately assigned to a data link must belong to a
subnet that identifies the appropriate destination.

Suppose the client 560 requested a second address, but this time
specified the serial line 562 (now bidirectional) as the downstream link.
This time, gateway/server 1 can assign an address itself; because, it is
connected directly to the serial line 562. However, the client 560 now
has a second address completely unrelated to the first address. This
leads to an important point: only a server attached to the head of a link
can legitimately assign an address for that link.

As a very useful side effect, the dynamic address allocation of the
present invention causes the creation and maintenance of routing
tables. Because the address request is seli-identifying (even if only in
data-link-specific terms), the server has enough information to enter new
routes into the appropriate routing tables. Servers themselves may
requisition entire subnets from larger-scale servers, thus serving to
automate large amounts of network administration.

Reliable M .

Network links are assumed to have the usual array of problems:
they can drop packets, deliver packets out of order, duplicate packets or
corrupt packets. The conventional transport layer on which the present
invention is built provides reliable communication over such networks.
Like the network layer, the transport layer does not replace or duplicate
existing functionality. The network protocol of the present invention can

WO 96/17306 PCT/US95/15279

-24.

provide reliability cheaply, without using its own mechanism on top of an
already reliable link. Of course, if the data travels over multiple links,
and at least one of those links is unreliable, then the transport layer will
reven to using its own reliability mechanisms for that data.

Reliability is implemented using a straightforward positive
acknowledgment with retransmission on time-out strategy. However,
the characteristics and bsage of the network makae it difficult to estimate
time-out. Consider a T1 line with 1.5 megabits/sec capacity. All of the
bandwidth may be available for data traffic until a user stans receiving
video. Then, the bandwidth left for data is suddenly reduced to less than
20 kilobits/sec with typical MPEG compression. At the other extreme,
consider a personal digital assistant (PDA) user who moves from
wireless to wire-based communication by plugging in a phone jack. In
this case, the bandwidth available jumps dramatically.

The transport layer must be able to adapt to these changes in
order to maintain reliable and efficient transport. The conventional
TCP/IP means of solving these problems are ineffective because they
rely on the existence of a connection. Since most data traffic in these
networks is connectionless (for reasons explained below), another
solution must be used.

The principle behind the solution is the same as for TCP/IP: If the
round-trip-time-the time elapsed from when the message was sent to
when an acknowledgment was received-diverges widely from the
expected round-trip time, we can assume that the available bandwidth
of at least one link has changed.

However, without connections, tracking round-trip times provides
almost useless information. There is no reason to assume that the same
round-trip will occur repeatedly. Nor does it help any of the other nodes
in the network. Instead, the network protocol of the present invention
focuses on trip times across individual links. This information is
propagated through the network over time to allow individual nodes to
have local access to trip estimate information. To avoid saturating the
network with control messages, this information is usually piggy-backed
inside data messages. As a benevolent side effect of the propagation,

WO 96/17306 PCT/US95/15279

-25.-

brief, spurious fluctuations in bandwidth have no noticeable impact on
trip estimation.

The present invention provides an architecture in which this
consumer model can evolve. By offering a service framework that
supports server application development, the media server 100 allows
developers to concentrate on the design of the media-based
applications, such as interactive shopping, news, games, research and
education. The network protocol of the present invention enables these
applications to communicate transparently across the complex
asymmetrical networks of today. Behind the services architecture, an
isochronous server and traditional data access methods deliver an
information-rich environment to the consumer via RPC.

Media S Archi

Referring again to Figure 2, the architecture of the media server
100 is described in detail in the following sections. The media server
100 includes these components as shown in the Figure 2:

. upstream manager 220

. downstream managers 210

. connection service 230

. boot service 216

. blob service 218

. name service 222

. stream services 224

. authentication service 226

- application services 240

. media data store (MDS) 251

. real-time scheduler 299

. network management service 226
. administration and monitoring service 298

Upstream Manager 220

The upstream manager 220 (USM) accepts messages from set-
top boxes 110 and routes them to services on the media server 100. The
upstream manager 220 also binds a downstream link for the messages

WO 96/17306 PCT/US95/18279

-26-

in a manner described in more detail below.

Downstream Manager 210

The downstream manager 210 (DSM) sends a stream of data,
both video and non-video, to a set-top box 110. When a set-top box 110
requests data, the data is read from the MDS 251 and the downstream
manager 210 sends the data to the set-top box 110. The downstream
manager 210 handles a real time data stream concurrently with a non-
real time data stream as is described below.

The USM 220 and the DSM 210 are gateways that bridge two
different types of networks. The USM 220 and DSM 210 move data
packets (i.e., portions of messages) across the bridge from one type of
network to another. These packets are routed independently from each
other. The routing is based on the intended destination of the packets.
These packets are portions of messages that may have originated from
a client (set top box 110) or a server 100, such as in response 1o a
remote procedure call RPC. In any case, in the preferred embodiment,
neither the USM 220 nor the DSM 210 actually decodes the messages
and processes them. The USM 220 and DSM do not attempt to
assemble or disassemble these messages. The USM 220 and DSM
210 see each packet as an independent entity which is to be routed
based on a destination address stored in the packet header.
Connection Service 230

The connection service 230 maintains a connection database
that keeps track of all currently active circuits on media server 100 and
their physical and logical addresses. When a set-top box 110 initially
connects to the media server 100, the set top box 110 sends a message
to the connection service 230 via the upstream manager 220. The
connection service 230 then establishes a downsiream manager 210 for
the circuit and updates the connection service database.

The present invention is intended to be able to adapt itself to a
variety of network topologies. Asymmetric networks complicate the
process by which client programs connect to the media server 100. The
Connection Service 230 is designed to encapsulate those

WO 96/17306 PCT/US95/15279

-27-

complications.

The Connection Service 230 provides a generic control point for
establishing connections between the media server 100 and its clients.
It manages allocation and deallocation of asymmetric virtual circuits
through the media server 100. The Connection Service 230 can be
queried for information about its mappings and can inform interested
parties of changes in connection state.

The Connection Service 230 is the single, reliable repository for
address mappings. Other services may cache needed addresses for
performance reasons; if they crash, though, those mappings can always
be reconstructed by querying the Connection Service 230.

In an asymmetric network, upstream and downstream messages
between a client and a server take place over distinct network
interfaces. For example, messages from a client to a server may be
routed over an X.25 packet-switched network, while responses from the
server back to the client flow over a dedicated T1 line. This was
described above in connection with Figure 5.

Before a client can hold round-trip conversations using the media
server 100, a virtual circuit between the upstream and downstream
networks must be established. The Connection Service 230 is
responsible for creating and managing these virtual circuits.
Connection Service 230 makes the following assumptions about the
nature of the network:

. Upstream communications will normally be low bandwidth,
while downstream communications will be high bandwidth.
. When a client wants to connect to the media server 100, a

physical upstream channel - by which the client can address the
server - will already exist.

. Upstream channels can be multiplexed through one or a
few Upstream Managers.

. One instance of the downstream manager is dedicated to a
single downstream channel (and therefore to a single set-top
box).

It is up to deployment-specific conventional software in the virtual

WO 96/17306 ' PCT/US95/15279

-28-

network layer 212 to manage physical upstream channels. It may be the
case that some server process, under the direction of an external
network control node, actuaily establishes contact with the client.
Conceptually, however, this protocol is transparent to the media server
100 proper.
A virtual circuit in the preferred embodiment consists of five items
of information:
. A physical address controlled by the downstream manager
(DSM) 210. That is, the actual addressing information used to put
bits down a wire.
. A control port by which the instance of DSM 210 can be
addressed. This is the logical address used by the boot service
216 and stream service 224 10 send data to the client.
. The logical address of a client. Because itis known that a
single DSM 210 can only serve one client (and one virtual circuit)
at a time, this logical address is pre-assigned when the DSM 210
is booted. The same logical address is recycled as clients
connect to and disconnect from the media server 100.

. A client's upstream physical address. This is an opaque,
port-specific upstream physical address from which a client sends
data. ,

. A client's downstream physical address. This is an

opaque, port-specific downstream address at which a client
receives data. The client's downstream physical address
represents the far end of the connection for which a OSM
physical address is the head end.
: The binding among the resources managed by a given
downstream manager (the downstream physical address, the logical
address of the DSM 210, and the logical address of the client) are
collectively referred to as the DSM binding.

The client's upstream and downstream physical addresses
together are called the client physical address. The client physical
address is sufficient to uniguely identify a virtual circuit.

_ Connection establishment is highly deployment-specitic, but

WO 96/17306 PCT/US95/15279

-29.

consists of four distinct phases.

1. The client communicates with the upstream manager 220

of the media server 100.

2. The client communicates with the Connection Service 230

to establish a virtual circuit through a media server 100. This

phase results in a round-trip path through the physical network to

the client. ' .

3. The client conducts a conversation with the Boot Service

216 to download any necessary software.

4, The client requests a logical client address for itself from

the media server 100.

Depending on the simplicity of the deployed network and the
sophistication of the client, the first three steps may be abbreviated, or
even absent. Before participating fully in the operation of the present
invention, the client must request a logical client address for itsel.

The Connection Service 230 can be queried by any other service
that needs to map between resources or that wants to inquire about the
state of a connection. For example, if the stream service 224 receives a
network message from a client to play a stream, the stream service 224
needs to locate the Downstream Manager 210 associated with that
client in order to give it indexing commands. The stream service 224
obtains a mapping between the client and its downstream manager from
the Connection Service 230.

Boot Service 216

When a user turns on the set-top box 110, set-top box (STB) 110
sends a boot request message to the upstream manager, which
determines what image to use to boot this STB 110. The STB 110 then
tells the boot service 216 which boot image to send. The boot service
216 communicates with the downstream manager 210 to accomplish
transfer of the boot image to the STB 110. The boot image is an
executable image that boots the set-top box 110. The set-top box 110
then boots. The boot image is stored in the media data store (MDS) 251.

Once the client has established a virtual circuit through the media

WO 96/17306 PCT/US95/15279

-30-

server 100, the client can send data to and receive data from services in
the media server 100. However, the client still lacks its system software
(unless it is stored in ROM) and the client network software. The client
acquires any system software it needs using the Set-top Boot Protocol,
which is implemented by the boot service.

For the purposes of the Boot Protocol, the downstream manager
210 serves as a proxy for the client.

1. The set-top box sends a boot request to the media server
100.
2. The upstream manager 220 and the connection service

230 cooperate to communicate addressing information to the
boot service 216.

3. The boot service 216 sends the boot image to the
downstream manager 210.

4. The downstream manager 210 extracts the boot image
from data messages and sends the boot image to the set-top box
110 as raw data on the downstream physical network.

5. The set-top box 110 boots and begins to run network
software.

BLOB Service 218

This service 218 controls the transmnssnon of binary large objects
(arbitrary sequences of bytes) downstream to the client without
processing overhead. in general, the BLOB data is retrieved from MDS
251 and efficiently sent down channel 124 to a client device 110. This
technique is the subject of two other above-referenced co-pending
patent applications.

Name Service 222

The name server 222 provides a global repository of string
information that is accessnble from any node. The name server 222
consists of the name server process and a programmatic interface which
links into the processes that communicate with the name server.
Processes obtain information about other services from the name server

WO 96/17306 ~ PCT/US95/15279

-31-

222.

Stream Service 224

The stream service 224 processes rate control messages from
the set-top box 110. When a set-top box 110 viewing a video file sends
a rate control instruction, the stream service 224 receives the message
via the upstream manager 220, reads a tagged file necessary for rate
control from the MDS 251, and sends a message 10 the downstream
manager 210. Generally this message tells the downstream manager
210 which portions of the video file to send to the set-top box 110 to
perform the rate control instruction. When the set-top box 110 plays
video without rate control, the stream service 224 simply passes a play
message to the downstream manager 210.

To accommodate many set-top boxes, many instances of the
stream service 224 can run on the server 100. The stream service 224
can run in either single-instance mode or concurrent mode. In single-
instance mode, there is only one instance of the service. In concurrent
mode, many instances of the stream service run concurrently to
accommodate many set-top boxes. Messages to the stream service 224
are received by an instance controller 229 and then routed to an
available stream service instance. After the stream service instance has
handled the message, the instance notifies the instance controller 229
that the instance is available to handle another message. Each stream
service 224 instance can accommodate roughly 100 set-top boxes. By
providing multiple instances of the stream service 224, the load on the
media server 100 can be more effectively balanced.

Authentication Service 226

The authentication service 226 maintains an authentication
database that keeps track of authorized media server 100 users,
households, and set-top boxes 110. The authentication service 226
accesses this authentication database to verify authorization for both
hardware and users. For example, when a set-top box 110 initialiy
requests a connection to the media server 100, the authentication

WO 96/17306 PCT/US95/15279

-32-

service 226 verifies that the set-top box 110 and household where it is
located are registered for connection to the media server 100.

The application running on the set-top box 110 can also require
that the user enter a personal identification number (PIN) when logging
in to the application or before requesting a movie. The authentication
service 226 then verifies the user/PIN combination before the
application allows the user to continue.

Application Services 240

Application services 240 receive messages from the upstream
manager 220 and send messages to system services (such as the
stream service 224) and other application services on behalt of
applications running on set-top boxes 110. The application services 240
encompass many different types of application services including math
services 242, home shopping services 244, movies on demand services
246, news on demand services 248 or other application specific
services 249. These services are implemented with standard intertaces
so the services are generally accessed in the same manner by a client
or other server 100 services.

Media Data Store (MDS) 251

The media data store (MDS) 251 is a real-tir:ne file system that is
optimized for storage and real-time retrieval of large files, such as MPEG
movies, blobs, boot images, and cards.

The MDS 251 stores files in volumes. A volume is a named
collection of disks. Each volume stores files in a flat namespace. The
MDS 251 provides quick access to a file given a unique 1D, such as the
filename. The MDS 251 is not meant to be a general purpose file

" system with directories that can be searched and browsed.
Sophisticated databases and client user intertace applications control
that level of interaction.

The MDS 251 supports striping and RAID (redundant array of
inexpensive disks) protection. Striping means a well known technique of
dividing each file into pieces, or stripes, and storing each stripe on a

WO 96/17306 PCT/US95/15279

-33-

different disk. Striping improves performance if some files are often
accessed by many users concurrently. Storing small pieces of a
heavily-accessed file on different disks distributes access to the file
across those disks, rather than concentrating it on one,

Real-Time Scheduler 299

The real-time scheduler 299 controls access into the real-time
section of the server 100. Real-time scheduler 299 receives access
requests for real-time service and determines the loading impact the
access will have on the system. The real-time scheduler 299
determines if the request can be granted given the current server ioad.
If the request can be granted, the access is scheduled. The real-time
scheduler 299 takes CPU, disk, and memory resources into account
when analyzing a request.

Network Management Service 226

' The network management service 226 accepts routing
commands during real-time stream playback. The network
management service 226 determines if a stream needs to be re-routed
given loading conditions and routing requests. If a stream needs 1o be
re-routed, the network management service 226 commands the virtual
network layer 212 to re-route the stream. Stream Server 224 is also
notified of the new routing.

Administrative and Monitoring Service 298
The media server 100 includes a performance monitoring
function and capability for test and debug.

o . { the Pref | Embodi
The media server 100 of the present invention uses the above
described components to establish and control virtual connections
between the media server 100 and an STB 110 as illustrated in Figures
6 - 12 and described below.
Referring now to Figure 6, a block diagram illustrates the

WO 96/17306 PCT/US95/15279

-34-

processing performed by the upstream manager 220 for establishing a
virtual circuit. A client device 110 sends a request for service to
upstream manager 220 on line 126. As described earlier, line 126
represents a data transfer through an arbitrary network. In a manner
described below in connection with Figures 9 through 12, upstream
manager 220 accesses connection service 230 to obtain a binding
between the incoming kequest for service from line 126 and a
downstream manager 210 for routing a response message or data
stream on line 124 back to the client originating the request for service.
Connection service 230 accesses a connection service table 320 to
obtain information regarding the relationship between the upstream
physical address, the client logical address, a corresponding
downstream physical address, and a corresponding downstream logical
address. When a virtual connection is initially established, connection
service 230 allocates space for the new connection through
downstream manager 210. The connection information is stored in a
routing table 310 and the connection service table 320. Once upstream
manager 220 obtains a downstream manager 210 binding from
connection service 230, the upstream manager 220 modifies the service
request message received from client 110 to insert downstream
manager binding information into the message. The service request
message is then routed by upstream manager 220 to the réquested
media service 322 on line 324. Response messages or data stream
activations are sent by the media service 322 directly to the downstream
manager 210 identified by the binding information inserted into the
service request message by upstream manager 220. In this manner,
media service 322 is able to route information back to the client 110
through the previously bound downstream manager 210.

Referring now to Figure 7, the structure of connection service
table 320 is illustrated. Connection service table 320 comprises
upstream manager physical address 410, client logical address 412,
downstream manager physical address 414, downstream manager
logical address 416, and downstream client physical address 418.
Because the present invention is best used in an asymmetric network,

WO 96/17306 PCT/US95/15279

-35-

the channel used by the client for transmitting service requests and
information is not the same channel used by the client for receiving
information from the server. The connection service table 320 is used to
maintain information pertaining to the binding between the upstream
channel and the downstream channel. Upstream manager physical
address 410 is a port specific upstream physical address from which the
upstream manager 220 receives data from a client 110. Client logical
address 412 comprises an identifier of a client running on client device
110 which originates service requests for server 100 and consumes
response messages and data streams received from media server 100.
Downstream manager physical address 414 is a port-specific
downstream physical address from which downstream manager 210
sends data on line 124 to a client device 110. Downstream manager
logical address 416 uniquely identifies an instance of downstream
manager 210 which is used for managing the channel identified by

- downstream manager physical address 414. Downstream client
physical address 418 identifies the port-specific downstream address at
which a client receives data from server 100. When a connection is
initially established between a client 110 and server 100, the
information in connection service table 320 is initialized to represent the
binding of a complete set of links between a clients upstream and
downstream channels. It will be apparent to those of ordinary skill in
the art that additional connection information may be maintained in
connection service table 320.

Referring now to Figure 8, the routing table 310 is illustrated.
Routing table 310 maintains information which associates a particular
downstream physical address 422 with a corresponding downstream
logical address 420. Because instances of downstream manager 210
may control a plurality of downstream manager physical addresses,
routing table 310 is needed to maintain the association between
instances of downstream manger 210 and the downstream physical
addresses they control. Thus, routing table 310 comprises a
downstream logical address 420 and corresponding downstream
physical addresses 422 which are associated with the particular

WO 96/17306 PCT/US95/15279

-36-

downstream logical address 420. Routing table 310 is built when the
server 100 is initialized at system stan-up.

Referring now to Figures 9 through 12, flow charts ilustrate the
processing logic performed by upstream manager 220 and connection
service 230 of server 100 when a connection with a client 110 is first
established and subsequently accessed in a request for service by
client 110 through server 100.

Referring now to Figure 9, the processing logic for establishihg a
connection from client 110 to server 100 is illustrated. In an initial
message sent by client 110 to upstream manager 220, the client issues
a request for initialization to media server 100 (processing block 612).
in processing block 614, upstream manager 220 obtains the upstream
physical address from a lower network layer of server 100 as the
message from the client enters the media server 100. The upstream
physical address identifies the client running on client device 110 that
has originated the request to establish a connection with server 100.
The upstream manager 220 is now aware of the client upstream
physical address. The upstream manager 220 calls connection service
230 to request a connection for the client originating the connection
request. Upstream manager 220 provides the upstream physical
address to connection service 230 on line 326 (processing block 616).
Connection service 230 accesses downstream manager 210 to request
an instance of downstream manager 210 and a downstream physical
address for the requesting client (processing block 618). The
downstream manager 210 causes the allocation of a client logical
address corresponding to the client. This client logical address is then
returned to the client. Processing then continues at the bubble labeled
A illustrated in Figure 10.

Referring now to Figure 10, processing for establishing a
connection between a client and server 100 continues at the bubble
labeled A. Once the connection service 230 has obtained a
downstream manager logical address and a downstream manager
physical address from downstream manager 210, the connection
service table 320 and the routing table 310 is updated to record the

WO 96/17306 PCT/US95/15279

-37-

association between the client logical address, the upstream physical
address, the downstream manager logical address, and the
downstream manager physical address. Having established the
connection (processing block 710), processing for establishing a
connection terminates through the exit bubble illustrated in Figure 10.

Referring now to Figure 11, processing logic by which a client on
client device 110 accesses a service on server 100 is illustrated. The
client sends a message via upstream manager 220 to request a service
on server 100. The client provides the client logical address in the
service request message initially received by upstream manager 220.
The client also provides the logical address of the server that is the
destination of the message. The message is broken down into packets
and sent to the upstream manager 220 on the upstream channe! 126.
The upstream manager 220 simply routes these packets to the
requested service using the logical destination address provided by the
client. The message still carries the client logic address of the client that
originated the message (processing block 810). Processing for
accessing a service then continues through the bubble labeled B
illustrated in Figure 12.

Referring now to Figure 12, processing logic for accessing a
service continues through the bubble labeled B. The requested service
provider 322 performs the requested service and generates a response
message with a destination field in the message filled with the client
logical address of the corresponding client (processing block 910). The
response message from the service 322 is sent to the client via the
downstream manager 210. Downstream manager 210 accesses the
routing table 310 to locate the downstream logical address associated
with the client logical address (processing block 912). The appropriate
instance of the downstream manager 210 is activated using the
downstream logical address and the correct non-real-time queue within
the downstream manager 210 is used 10 hold the message. This
instance of the downstream manager 210 routes the response message
from service 322 and the particular non-real-time queue to the
appropriate client over the physical downstream channel of line 124

WO 96/17306 PCT/US95/15279

-38- -

associated with the client logical address (processing block 914). The
downstream manager 210 knows which physical channel to use based
on the queus from which the downstream manager 210 retrieves the
data. The response message from service 322 or the data stream
initiated by service 322 thereby finds its way back to the originating
client on client device 110. This design allows one instance of the
downstream manager 210 to support multiple channels. Processing for
accessing a service terminates through the exit bubble illustrated in
Figure 12.

it is important to note that all routing is accomplished based on
logical addresses, not physical addresses. In other words, packets (and
therefore messages) only contain logical addresses of the sender and
receiver. At various points in the network, routing decisions need to be
made. It is at these points that a physical address is determined from a
local routing table based on the logical destination address. The
packets are then sent along the physical channel indicated by the
determined physical address. The content of the packets are not
modified by this routing processing. Further routing decisions are made
in the same manner until the packet ultimately reaches its destination.
At the destination, the packets are re-assembled into the original
message and provided to the message receiver.

Referring now to Figures 13 and 14, a block diagram of
downstream manager 210 is illustrated. Downstream manager 210
receives input over two basic types of input channels. First, a real-time
stream of data is received over a real-time channel. Secondly, sporadic
and asynchronous non-real-time data is received over a non-real-time
channel. Downstream manager 210 includes logic for multiplexing
information received over these two channels and producing a
combined or composite set of information output 1o a client on channel
124 through network 120. Although channel 124 is a high bandwidth
transmission line, downstream manager 210 must nevertheless
efficiently manage this output channel to insure that a stream of real-
time data received from the reai-time channel is not disturbed by the
transmission of non-real-time date received from the non-real-time

WO 96/17306 PCT/US95/15279

-39-

channel. On the other hand, the downstream manager 210 must
prevent critical non-real-time data from being shut out because of a
continual stream of real-time data Thus, downstream manager 210
includes logic for optimally managing the bandwidth available on line
124. When this bandwidth or a portion thereof is needed for the transfer
of a real-time data stream received from the real-time channel,

" downstream manager 210 provides the necessary bandwidth for the
real-time data stream. If any remaining bandwidth on line 124 is
available, downstream manager 210 provides this remaining bandwidth
for the transfer of non-real-time data received over the non-real-time
channel concurrently with the transfer of the real-time data stream on
line 124. If no requests for the transfer of real-time data are pending,
downstream manager 210 allows the transfer of non-real-time data over
a larger portion of the bandwidth of line 124 than could be
accommodated if bandwidth was required for the transfer of real-time
data. In this manner, downstream manager 210 dynamically allocates
the available bandwidth of line 124 between a real-time data source
and a non-real-time data source.

Referring now to Figure 14, the implementation of the preferred
embodiment of the present invention is illustrated. Downstream
manager 210 provides two sets of queues for managing the two types of
input data. First, a real-time queue or set of queues 1110 is interposed
between the real-time input channel and downstream manager 210.
The real-time queue 1110 receives requests for real-time data transfers
and queues these requests using traditional queuing techniques. In
addition, a non-real time queue or set of queues 1112 is interposed
between the non-real-time input channel and downstream manager
210. The non-real-time queue 1112 receives requests for the transfer of
non-real-time data and queues these requests using standard queuing
techniques. Downstream manager 210 pulls requests from either of
these two queues as the available bandwidth on line 124 allows. The
processing involved for accomplishing this task is illustrated in Figure
15.

Referring now to Figure 15, a flow chart illustrates the processing

WO 96/17306 PCT/US95/15279

-40-

Ioglc performed by downstream manager 210 for controlling the real-
time and non-real-time data transferred over line 124 to client device
110. Downstream manager 210 receives real-time data transfer
requests through real-time queue 1110 and non-real-time data transter
requests through non-real-time queue 1112. Because the requests in
real-time queue 1110 receive priority in the preferred embodiment, the
content of real-time queue 1110 is checked in processing block 1212 as
illustrated in Figure 15. If any real-time data transter requests are
present in real-time queue 1110, processing path 1218 is taken to
processing block 1220. In this case, the next data transfer request is
retrieved from the real-time queue 1110 and the real-time data transfer
is initiated over line 124 (processing block 1220). If this real-time data
transfer consumes the entire available bandwidth of line 124,
processing path 1224 is taken to the bubble tabeled C illustrated in
Figure 15 where the real-time queue is checked for any additional real-
time data transfer requests. If the entire bandwidth of the downstream
channel 124 is not allocated (processing path 1226), or if no real-time
data transfer requests are pending in real-time queue 1110 (processing
path 1216), processing block 1228 is performed. In this case, the next
request from the non-real time queue 1112 is retrieved and the non-
real-time data transfer is initiated in the remaining available bandwidth
of downstream channel 124. Processing then continues through the
bubble labeled C illustrated in Figure 15 where the real-time queue is
again checked for additional pending data transfer requests. In this
manner, the downstream manager 210 multiplexes real-time and non-
real-time data transfer requests for concurrent transfer over a
downstream channel of limited bandwidth.

Referring now to Figure 16, the remote procedure call (RPC)
mechanism of the present invention is illustrated. Because of the
distributed nature of the present invention, client programs cannot be
linked directly with the services that they use. instead, the media server
100 of the present invention uses a remote procedure call (RPC)
mechanism to communicate requests from clients to servers and to pass
information back. To use the RPC mechanism, the client program is

WO 96/17306 ' PCT/US95/15279

-41-

linked with a stub routine, which provides a function-call interface to the
service. The stub routines shelter the client and server code from the
complexities of machine dependence and logical network transpon.

Referring to Figure 16, an example illustrates the steps performed
during the execution of a typical RPC call. These steps are set forth as
follows:

Step 1. The client makes a standard function call 1330 to a client
stub routine 1312.

Step 2. The client stub routine 1312, 1) marshals data into a
machine-independent form, and 2) uses the network protocot 1332 of
the present invention to transmit the RPC information to the server stub
routine 1318. '

Step 3. On the server side, the RPC mechanism invokes the
server stub routine 1318 on path 1315.

Step 4. The server stub routine 1318, 1) unmarshals the data,
and 2) calls the actual server function 1316 on path 1317. Thus, the
server function 1316 is invoked as if it has been called by a local routine
in the client. The sequence of events is similar when the server returns
data to the client.

Thus, an improved system and method for providing multimedia
data in a networked system is disclosed. These specific arrangements
and methods described herein are merely illustrative of the principles of
this invention. Numerous modifications in form and detail may be made
by those of ordinary skill in the art without departing from the scope of
the present invention. Although this invention has been shown in
relation to a particular preferred embodiment, it should not be
considered so limited. Rather, the present invention is limited only by
the scope of the appended claims.

WO 96/17306 PCT/US95/15279

-42-

CLAIMS
We claim:
1. In an asymmetric network, a media server comprising:
an upstream manager coupled to said asymmetric network on a
first channel, said upstream manager including:
a) means for receiving a first message from a client on said
first channel, said first message identifying a requested
service and an originating client address,
b) means for assigning a second channel address to said
client, said second channel address identifying a second
channel different from said first channel for returning
messages to said client, and
c) means for routing said first message to said requested
service; and
a downstream manager coupled to said asymmetric network on
said second channel, said downstream manager including:
d) means for receiving a second message from said
requested service, said second message including said
originating client address, and
e) means for routing said second message 10 said client on
said second channel.

2. In an asymmetric network, a media server comprising:

an upstream manager coupled to said asymmetric network on
a first channel, said upstream manager including a first
channel for receiving a first message from a client on said
first channel, said first message identifying a requested
sarvice and an originating client address,

a connection service for assigning a second channel address
to said client, said second channel address identifying a
second channel ditferent from said first channel for
returning messages to said client, and

a downstream manager coupled to said asymmetric network
on said second channel, said downstream manager

WO 96/17306 PCT/US95/15279

-43-

including an interface for receiving a second message
from said requested service, said second message
including said originating client address, said downstream
manager including logic for routing said second message
1o said client on said second channel.

3. In an asymmetric network, a downstream manager coupled to said
asymmetric network on a downstream channel having a predetermined
bandwidth, said downstream manager comprising:
a) a real time queue for storing a plurality of requests for real time
data streams;
b) a non-real time queue for storing a plurality of requests for non-
real time data; and _
¢) means for servicing said plurality of non-real time requests
concurrently with servicing said plurality of real time requests on
any bandwidth of said downstream channel not used by said
plurality of real time requests.

4. The media server as claimed in Claim 1 wherein said first message is
a remote procedure call.

WO 96/17306

251

1712

PCT/US95/15279

MEDIA AUDIO OTHER NON
DATA SOURCES SOURCES REAL-TIME REAL-TIME
STORAGE SOURCE SOURCES
[X X 1
100
N\
122
MEDIA 12
SERVER 122
122
SERVICES
REAL-TIME UPLINK
CHANNEL CHANNEL

CLIENT
Py 110

(SET-TOP "
BOXES) 110

SUBSTITUTE SHEET (RULE 26)

WO 96/17306 PCT/US9S/18279
2/12
VIDEOQ AUDIO OTHER NON
MEDIA SOURCES SOURCES REAL-TIME REAL-TIME
DATA SOURCE SOURCES TEXT
STORE DATABASE
MDS
253
VIDEO AUDIO IMAGE TEXT | OBJECTS | TABLES
100 252 254 256 258 260 262
N DATA ACCESS LIBRARY 250
Y . ADMINISTRATION .
SYSTEM SERVICES -214 | ADM DISTRATIO APPLICATIONS SERVICES - 240
BOOT BLOB NAME SERVICE MATH HOME GAMES
SERVICE | | SERVICE | | SERVICE 298] | SERVICE | |SHOPPING] | SERVICE
216] _218| 222} "MEDIA SERVER | 242 SERV'&% 297
STREAM | [AUTHENT-] [REALTIE n T L
SERVICE s?a’éf?gs SCHEDULER| | INSTANCE || , Mgvussm | i
224 289 249 EMAND 249
28| ———, 29| === SERVICE ===
! | | ! I [
NETWORK
| 1 [CONNECTION] | [! i
MANAGE- NEWS ON
NGE- | 1___2%; | SERVICE |1__ _249, DEMAND | 1— — 249
SERVICE SERVICE
226 RN 248
DOWNSTREAMMANAGER UPSTREAM MANAGER
VIRTUAL NETWORK LAYER (SERVER SIDE) 212

™ VIRTUAL NETWORK LAYER (CLIENT SIDERZ?|
NETWORK MESSAGING LAYER 270
CLIENT SYSTEM LAYER 274
CLIENT APPLICATIONS
NEWS MOVIE OTHER

BROWSER | | BROWSER | *== [APPLICATIONS

278 280 282
216

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 96/17306 PCT/US95/15279

3712

NETWORK 2

GATEWAY TO
12.34.12.00 SUBNET

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US95/15279

WO 96/17306

4/12

(3dIM
INOHd313L ONILSIX
H3AO) YHOML3N
YNIINMOQ 14

INOBYIvE

HHOMLIN WYIHLSNMOQ 31dNVX3.

NHOMLIN S¢'X

HHOMLIN dl

HHOMLIN WY3HLSdN 31dWVX3.

SUBSTITUTE SHEET (RULE 26)

WO 96/17306 PCTUS95/15279

5712

GATEWA;ISERVER

562

SERIAL UNE

GATEWA:ISERVER

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 96/17306

6712

PCT/US95/15279

)
310 -
CONNECTION MEDIA SERVER
i d SERVICE SERVICE
TABLE
" ()
o e
42
230
324
226 N
36
1 * J/
DOWNSTREAM UPSTREAM
MANAGER MANAGER
220
P
L/
CLIENT DEVICES
10

SUBSTITUTE SHEET (RULE 26)

WO 96/17306

PCT/US95/15279
7/12
CONNECTION SERVICE TABLE
320 4
UPSTREAM CUENT DOWNSTREAM | DOWNSTREAM | DOWNSTREAM
::\#YN?I%E? LOGICAL MANAGER MANAGER CUENT
Al

ADDRESS PHYSICAL LOGICAL PHYSICAL
ADDRESS ADDRESS ADDRESS ADDRESS
410 412 414

FIG. 7

ROUTING TABLE
310

DOWNSTREAM

DOWNSTREAM
LOGICAL PHYSICAL
ADDRESS ADDRESS

420 a2

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 96/17306 PCT/US95/15279

8712

- 610
ESTABLISH
CONNECTION

CLIENT ISSUES A REQUEST FOR INITIALIZATION TO /5‘2
UPSTREAM MANAGER IN A MESSAGE TO THE
MEDIA SERVER

Y

UPSTREAM MANAGER OBTAINS UPSTREAM /6‘4
PHYSICAL ADDRESS AS MESSAGE FROM CUENT
ENTERS MEDIA SERVER

y

UPSTREAM MANAGER CALLS CONNECTION /6'5
SERVICE TO REQUEST A CONNECTION. UPSTREAM
MANAGER PROVI‘?DES #Ela:srnw PHYSICAL

v

CONNECTION SERVICE AND THE DOWNSTREAM /6‘8
MANAGER ALLOCATE AN APPROPRIATE AND
AVAILABLE DOWNSTREAM PHYSICAL ADDRESS
AND A CLIENT LOGICAL ADDRESS
CORRESPONDING TO THE UPSTREAM PHYSICAL
ADDRESS AND THE CLIENT. THE CLIENT LOGICAL
ADDRESS IS RETURNED TO THE CLIENT

FIG. 9

THE CONNECTION SERVICE TABLE AND ROUTING | 710
TABLE IS UPDATED TO REFLECT THE UPSTREAM
AND DOWNSTREAM ADDRESSES. THE
CONNECTION IS ESTABLISHED

FIG. 10

SUBSTITUTE SHEET (RULE 26)

W0 96/17306 PCT/US95/15279
9/12

ACCESSING A
CONNECTION

CLIENT PROVIDES CLIENT LOGICAL ADDRESS AND | 810
SERVICE DESTINATION LOGICAL ADDRESSINA ¥
SERVICE REQUEST MESSAGE TO THE
DESTINATION SERVICE VIA THE UPSTREAM
MANAGER. UPSTREAM MANAGER ROUTES
PACKETS OF THE MESSAGE TO THE DESTINATION
USING THE DESTINATION LOGICAL ADDRESS

FIG. 11

THE REQUESTED SERVICE PROVIDER PERFORMS THE REQUESTED | 910
SERVICE AND GENERATES A RESPONSE MESSAGE WITH A DESTINATION
FIELD IN THE MESSAGE FILLED WITH THE CLIENT LOGICAL ADDRESS OF
THE CLIENT. THE RESPONSE MESSAGE IS SENT TO THE CLIENT VIA THE

DOWNSTREAM MANAGER

Y

THE DOWNSTREAM MANAGER ACCESSES THE | 912
ROUTING TABLE TO LOCATE THE DOWNSTREAM ¥
LOGICAL ADDRESS ASSOCIATED WITH THIS CLIENT
LOGICAL ADDRESS

v

THE: APPROPRIATE INSTANCE OF THE DOWNSTREAM MANAGER IS | 914
ACTIVATED USING THE DOWNSTREAM LOGICAL ADDRESS. THE INSTANCE
OF THE DOWNSTREAM MANAGER ROUTES THE RESPONSE MESSAGE TO

THE APPROPRIATE CLIENT OVER THE DOWNSTREAM CHANNEL
ASSOCIATED WITH THE CLIENT LOGICAL ADDRESS

A

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 96/17306

REAL-TIME
QUEUE \\

107 12

REAL-TIME
CHANNEL

|

- |
d

NON-REAL-TIME
CHANNEL

) 4

DOWNSTREAM
MANAGER

210

!!124

FIG. 13

REAL-TIME .
CHANNEL

!

NON-REAL-TIME
CHANNEL

NON-REAL-TIME
QUEUE

l

DOWNSTREAM
MANAGER

i

210

!!124

FIG. 14

SUBSTITUTE SHEET (RULE 26)

PCT/US95/15279

WO 96/17306 PCT/US95/15279

Nnrs12

1210
DOWNSTREAM

MANAGER |
)
1212
v

CHECK REAL-TIME QUEUE

1214

ANY
REAL-TIME
DATA REQUESTS IN THE
REAL-TIME QUEUE

1220

TAKE THE NEXT ITEM FROM THE REAL-TIME
QUEUE AND BEGIN THE REAL-TIME TRANSFER

1222

DOWNSTREAM CHANNEL
BANDWIDTH USED

1228

TAKE THE NEXT [TEM FROM THE NON-REAL-
TIME QUEUE AND BEGIN THE NON-REAL-TIME
TRANSFER IN THE REMAINING AVAILABLE
DOWNSTREAM CHANNEL BANDWIDTH

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 96/17306 PCT/US9S/15279
12712
CUENTDEWICE 110 MEDIASERVER 100
CLIENT CODE 1330 SERVER CODE 1318
g s = hdGetStatus (args) ; 4 $ hder hdGetStatus (args) |
= 110 . 1340
(do actual work) */
CLIENT STUB retum O;
™ (rasha gt ¥ 13 hderr hBetStatus_stub{m_args)
I* (wnmarshal arguments) %/ {unmarshal arguments) */
;Wm 1t 1314 sr :(hdGetStatus (atgs));.l-‘ 1342
sl | v ;,mm'ﬂ’m arguments <
/ 1315 118
~—— RPCMECHANISM rat—} .) RPC MECHANISM (<t——}-
NETWORK m\n \
|

Vd

/
1344

FIG. 16

SUBSTITUTE SHEET (RULE 26)

1320

	2009-11-30 Foreign Reference

